Observer-based Iterative Learning Control with Evolutionary Programming Algorithm for Mimo Nonlinear Systems
نویسندگان
چکیده
In this paper, the observer-based iterative learning control with/without evolutionary programming algorithm is proposed for MIMO nonlinear systems. While the learning gain involves some unmeasurable states, this paper proposes the observer-based iterative learning control (ILC) for nonlinear systems and guarantees the tracking error convergences to zero via continual learning. Moreover, a sufficient condition has been presented to alleviate the traditional constraint, i.e., identical initial state, in the convergence analysis. Then, an idea of feasible reference based on polynomial approximation is proposed to overcome the limitation of ILC – initial state error. To speed up the convergence of the iterative learning control, evolutionary programming is applied to search for the optimal and feasible learning gain to reduce the training time. In addition, two improved issues of ILC, an appropriate selection of the initial control input and the improved learning rule for the system whose product matrix of output matrix C and input matrix B is not full rank, are presented in this paper. Three multi-input multi-output (MIMO) illustrative examples are presented to demonstrate the effectiveness of the proposed methodology.
منابع مشابه
A Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملAn Algorithm for Multi-Realization of Nonlinear MIMO Systems
This paper presents a theoretical approach to implementation of the “Multi-realization of nonlinear MIMO systems”. This method aims to find state-variable realization for a set of systems, sharing as many parameters as possible. In this paper a special nonlinear multi-realization problem, namely the multi-realization of feedback linearizable nonlinear systems is considered and an algorithm for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010